ACS Medicinal Chemistry Letters

I FTTFR

Exploring Aigialomycin D and Its Analogues as Protein Kinase **Inhibitors for Cancer Targets**

Jin Xu,^{†,‡} Anqi Chen,^{*,†} Mei-Lin Go,[‡] Kassoum Nacro,[§] Boping Liu,[§] and Christina L. L. Chai^{*,†,‡}

⁺Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665

[‡]Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543

^{\$}Experimental Therapeutic Centre (ETC), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos Level 3, Singapore 138669

Supporting Information

ABSTRACT: The natural product aigialomycin D (1) is a member of the resorcylic acid lactone (RAL) family possessing protein kinase inhibitory activities. This paper describes the synthesis of aigialomycin D and a series of its analogues and their activity for the inhibition of protein kinases related to cancer pathways. A preliminary study of these compounds in the inhibition of CDK2/cyclin A kinase has found that aigialomycin D and analogues 11 and 23 are moderate CDK2/cyclin A inhibitors with IC₅₀

(1) $R_1 = (S)$ -Me, $R_2 = H$ $(IC_{50} = 0.45 \ \mu M \text{ for MNK2})$ (11) R₁ = (*R*)-Me, R₂ = H (23) R₁ = (S)-Me, R₂ = Me

values of ca. $20 \,\mu$ M. Kinase profiling of aigialomycin D against a panel of kinases has led to the identification of MNK2 as a promising target (IC₅₀ = 0.45 μ M), and preliminary structure-activity relationship studies have been carried out to identify the essential functional groups for activity.

KEYWORDS: Aigialomycin D, CDK2, MNK, kinase inhibitor, resorcylic acid lactone

Kinases are essential components of cellular signaling net-works and play key roles in the regulation of many important biological processes relating to cell growth, differentiation, apoptosis, etc. Studies on the inhibition of protein kinase signaling pathways over the last two decades have developed into a major paradigm for the discovery of new drugs, primarily in the area of oncology, and others such as inflammation and cardiovascular disease.^{1–4} Currently, there are 11 kinase inhibitors that have been approved as drugs for the treatment of various types of cancers.⁵ All of these approved drugs, along with most of the known protein kinase inhibitors, contain at least one N-aromatic heterocyclic motif. However, with increasing reports of resistance responses among patients to these drugs 6-8 as well as the need to develop new drugs for different types of cancers, small molecule kinase inhibitors with new scaffolds are actively being sought. One of the more promising groups of natural products that have recently emerged as new lead structures for kinase inhibition is the resorcylic acid lactones (RALs),^{9–11} which are β -resorcylic acid derivatives possessing a 14-membered macrolactone ring. To date, more than 30 naturally occurring RALs have been reported, and these have a broad spectrum of biological activities, particularly as potent and selective inhibitors of protein kinases, such as transforming growth factor- β -activated kinase 1 (TAK1), mitogen-activated protein (MAP) kinase, and MAP kinase kinase (MEK). $^{9-11}$ Among the most extensively investigated RALs are those containing a *cis*-enone moiety (e.g., hypothemycin, $^{12-14}$ LL-Z-1640-2, $^{15-19}$ and L-783277^{20,21}) because of their potent kinase inhibitory properties (Figure 1). The mechanism of inhibition is thought to be due to the Michael

acceptor nature of the *cis*-enone system, which enables covalent binding to the cysteine residue in the ATP-binding pocket of a subgroup of kinases.^{22,23} In contrast, aigialomycin D $(1)^{24-28}$ does not possess an enone system and yet is a cyclin-dependent kinase (CDK) 1 and 5 inhibitor albeit with less activity (IC₅₀ \sim 6 μ M).²⁶ This suggests that different RAL scaffolds may inhibit different kinases via various mechanisms. To understand this further, a structure-activity relationship (SAR) study of aigialomycin D and analogues is necessary. At the outset of this study, we examined the kinase inhibitory activity of aigialomycin D and analogues against CDK2, a validated target for anticancer drug development²⁹⁻³¹ yet unexplored for RALs.

The target compounds for SAR studies were designed to identify the functionalities that are critical to their kinase inhibition activity. Specifically, compounds 22-24 and 27 were synthesized to examine the nature of the substitution on the aromatic ring of the RAL scaffold while other compounds enabled the SAR study of the macrocyclic system. The analogues were synthesized based on the route previously reported by us for aigialomycin D (Scheme 1).²⁷ The aromatic fragment 2 was coupled with alcohols (3a-c) via the Mitsunobu reaction, providing the benzoates (4a-c) in excellent yields (>90%). The benzoates (4a-c) were then acylated at the benzylic position by deprotonation with lithium diisopropylamide (LDA) followed by condensation with the Weinreb amides $(9 \text{ and } 10)^{28}$ to access

```
Received:
            March 9, 2011
Accepted:
           July 17, 2011
Published: July 17, 2011
```

the dienes (5a-d). The dienes (5a-d) were cyclized by ringclosing olefin metathesis (RCM) to give the macrocyclic compounds (6a-d) in high yields. Reduction of the C-2' carbonyl group followed by mesylation and elimination installed the *trans*-1',2'-double bond. Finally, global deprotection of the protecting groups afforded aigialomycin D and its analogues (1 and 11–13).

From the key intermediate **6a**, a number of analogues were also accessed (Scheme 2). Deprotection of **6a** provided **14**, which was further hydrogenated to give **15**. Reduction of the carbonyl group in **6a** using NaBH₄ followed by deprotection yielded **16** as a C-2' epimeric mixture, which was further hydrogenated to give **17**. The *N*-oxime analogue (**18**) was obtained by treating **14** with hydroxylamine hydrochloride to give **18** as a *cis*- and *trans*-mixture. 7',8'-Dihydro aigialomycin D (**19**) was prepared from **6a** by reduction of the carbonyl group followed by saturation of 7',8'-double bond, elimination and deprotection. Taking advantage of the pivotal intermediate **6a**,

Figure 1. Representative RALs and their biological activities.

two C2-phenol methylated analogues 24 and 27 were also prepared. Because C2-phenol is less reactive than C4-phenol due to intramolecular hydrogen bonding, the synthesis of 24 and 27 require a sequence of multistep transformations. In the sequence of transformations to 24, the more reactive C2methoxymethyl (MOM) group and the acetonide group in 25 were removed using 0.2 M TFA in methanol to give intermediate 26. The C2-phenol of 26 was then methylated followed by the deprotection of the C4-MOM group to provide analogue 24. Compound 27 was obtained through a sequence of similar but slightly different order of transformations from the ketone 6a.

More analogues were accessed from aigialomycin D (1) (Scheme 3). Full saturation of the two double bonds in aigialomycin D (1) afforded tetrahydro-agialomycin D (20). Attempted methylation of the 2,4-phenolic groups of 1 using excess Me_2SO_4 in acetone did not provide either the mono- or the dimethylated product. Unexpectedly, the acetonide 21 was obtained as the sole product in high yield (94%). Alternative methylation of the phenolic groups in compound 1 using trimethylsilyldiazomethane in the presence of methanol and *N*,*N*-diisopropylethylamine³² provided a mixture of mono- (at C-4) and dimethylated products (22 and 23) in a ratio of 1:1 (by ¹H NMR spectroscopy). The two compounds 22 and 23 were separable by HPLC.

With aigialomycin D and its analogues in hand, the competitive inhibition of these compounds to the ATP-binding site of CDK2/cyclin A was initially screened using an immobilized, metal ion, affinity-based fluorescence polarization (IMAP) enzyme assay.³³ In this assay, purvalanol A (a highly potent CDK inhibitor) was used as the positive control, and percentage inhibitions by aigialomycin D and analogues were measured. From this screen, compounds **1**, **11**, and **23** were identified as the three most active ones at a 10 μ M concentration (Table 1). The IC₅₀ values of these three compounds were determined and found to be at ca. 20 μ M (Table 1), indicating that they were only moderate CDK2/cyclin A inhibitors. These results, however,

^{*a*} Reagents and conditions: (a) Diisopropylazodicarboxylate (DIAD), PPh₃, THF, room temperature, 3 days, >90%. (b) LDA, THF, -78 °C, then **9** or **10**, 15 min, 19–65%. (c) Hoveyda–Grubbs II (5–10 mol %), 1,2-dichloroethane, reflux, 1 h, 76–99%. (d) NaBH₄/MeOH, 0 °C, 30 min, 77–99%. (e) (i) MsCl, Et₃N, 4-dimethylaminopyridine (DMAP), CH₂Cl₂, 0 °C to room temperature, 3 h; (ii) diaza(1,3)bicyclo[5.4.0]undecane (DBU), toluene, reflux, 1 h, 32–65%. (f) 2 N HCl, MeOH, 40 °C, 6 h, quantitative.

Scheme 2. Synthesis of Aigialomycin D Analogues 14–19, 24, and 27^a

^{*a*} Reagents and conditions: (a) 2 N HCl, MeOH, 40 °C, 6 h. (b) H₂, 10%Pd/C, EtOH, room temperature, 20 h. (c) NH₂OH \cdot HCl, NaOAc, dioxane, 100 °C, 3 h, quantitative. (d) NaBH₄/MeOH, 0 °C, 30 min. (e) (i) MsCl, Et₃N, DMAP, CH₂Cl₂, 0 °C to room temperature, 3 h; (ii) DBU, toluene, refluxing, 16 h. (f) 0.2 M trifluoroacetic acid, MeOH, room temperature, 3 h. (g) Me₃SiCHN₂ (2 equiv), ^{*i*}Pr₂NEt, MeOH/MeCN (2:3), room temperature, 18 h.

Scheme 3. Synthesis of Aigialomycin D Analogues $20-23^{a}$

^{*a*} Reagents and conditions: (a) Me_3SiCHN_2 (3 equiv), ^{*i*} Pr_2NEt , MeOH/MeCN (2:3), room temperature, 18 h. (b) H_2 , 10%Pd/C, EtOH, room temperature, 20 h. (c) Me_2SO_4 , K_2CO_3 , acetone, room temperature, 1 h.

bridged the gap of aigialomycin D against CDK2, which has not been disclosed previously.

To identify better kinase targets, aigialomycin D (1) was screened against a panel of 96 kinases at 10 μ M (see the Supporting Information). Five most inhibited kinases with an inhibition of <10% of negative control are listed in Table 2. Among these, UFO/ARK/Tyro7 (AXL),³⁴ FMS-like tyrosine kinase 3 (FLT3),^{35,36} mitogen-activated protein kinases interacting kinases (MKNK, or MNK),^{37–39} and multifaceted pololike kinase 4 (PLK4)^{40–42} are validated targets for oncology drug development. The K_d values of these kinases against 1 showed

Table 1. Percentage Inhibition of CDK2/Cyclin A by 1 and
Its Analogues at 10 μ M and IC ₅₀ Values of Selected
Compounds

compound	% inhibition ^a	IC_{50} $(\mu M)^b$	compound	% inhibition ^a	IC_{50} $(\mu M)^b$
1	55 ± 8	21 ± 5	19	25 ± 3	ND
11	64 ± 5	19 ± 2	20	16 ± 1	ND
12	38 ± 2	ND	21	19 ± 5	ND
13	17 ± 11	ND	22	13 ± 7	ND
14	21 ± 4	ND	23	49 ± 12	19
15	17 ± 4	ND	24	17 ± 8	ND
16	8 ± 15	ND	27	10 ± 3	ND
17	6 ± 0	ND	purvalanol A	94 ± 1	ND
18	19 ± 5	ND			

^{*a*} Experiments were carried out at 10 μ M with purvalanol A (1 μ M) as a reference compound. Percentage inhibition values were the averages \pm SDs of three independent experiments except for **17**, **19**, **20**, **21**, and **27**, which were given as the means of two experiments. ^{*b*} Data are expressed as averages \pm SDs from dose–response curves of three independent experiments, except for **23**, which is the mean value of two experiments. ND = not determined.

that MKNK2 (also named MNK2 and referred to hereafter) was the most inhibited with a K_d value of 0.16 μ M. This high activity is very attractive as MNKs are known to phosphorylate and regulate oncogene eIF4E,^{43,44} which is an emerging target for cancer drug development.^{37–39} In addition, the biological implication of the great selectivity of MNK2 over MNK1 (K_d = 40 μ M, not shown in Table 2) could be worth exploring.

Table 2. Kinases with Inhibition <10% Control by 1 and Their K_d Values

kinase	AXL	FLT3	MNK2	PLK4	PRKCE	
% control ^a	4.7	7.1	0.15	9.6	7.2	
$K_{\rm d}$ (μ M)	1.0	0.30	0.16	0.26	12	
a Determined at 10 μ M with DMSO as a negative control. A lower value						
indicates a stre	onger inhil	oition.				

Table 3. IC₅₀ Values of Compounds against MNK2

compound	$IC_{50} (\mu M)^a$	compound	$IC_{50} (\mu M)^a$
1	0.45 ± 0.2	18	>10
11	>10	19	1.35 ± 0.07
12	>10	20	>10
13	1.61 ± 0.81	21	0.58 ± 0.36
14	>10	22	>10
15	>10	23	>10
16	>10	24	>10
17	>10	27	>10

 a Data are expressed as averages \pm SD from dose response curves of 2 independent experiments.

Having identified MNK2 as a promising new target of aigialomycin D, the IC₅₀ values of the 16 compounds prepared early on were determined using a validated in-house IMAP protocol (see the Supporting Information). The results showed that compounds **1**, **13**, **19**, and **21** have similar activities with IC₅₀ values at the range of $0.45 - 1.6 \mu$ M, while the rest were much less active with IC₅₀ values >10 μ M (Table 3). These results indicated that an unprotected resorcinol unit together with 1',2'-double bond and (*S*)-10'-methyl group (**1**, **13**, **19**, and **21**) are critical for the high activity. Although removal of 5',6'-diol (**13**) or saturation of 7',8'-double bond (**19**) caused a decrease of ca. 3–3.5-fold in activity, masking the diol as an acetonide (**21**) surprisingly only had marginal effects. These preliminary results should provide useful guidance for the design of next generation of compounds and SAR studies.

In summary, we have synthesized aigialomycin D and a series of its analogues based on a convergent and efficient synthetic route developed previously. Three compounds (1, 11, and 23) have been found to be moderate inhibitors of CDK2/cyclin A complex with IC₅₀ values at ca. 20 μ M. These results bridged the gap of previously unknown CDK2 activity of aigialomycin D. Kinase profiling of aigialomycin D (1) led to the discovery of MNK2 as a promising new target with an IC₅₀ value of 0.45 μ M. Preliminary SAR studies of the synthesized compounds against this kinase revealed that an unprotected resorcinol motif and 1',2'-double bond are crucial for the activity. These results should provide useful guidance for the design of more potent compounds for MNK2, which is currently underway in our laboratories.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures and characterization data for all new compounds and protocol for IMAP assays for CDK2 and MNK2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Fax: +65-64642102. E-mail: chen_anqi@ices.a-star.edu.sg@ ices.a-star.edu.sg (A.C.) or christina_chai@ices.a-star.edu.sg (C.L.L.C.).

Funding Sources

This work is funded by the Agency for Science, Technology and Research (A*STAR), Singapore.

ACKNOWLEDGMENT

We are grateful to Dr. Jeffrey Hill (Experimental Therapeutic Centre, Agency for Science, Technology and Research) for the support on the MNK2 assay, Dr. Paul H. Bernardo [Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research] for the help on molecular modelling, and Wee Xi Kai (Department of Pharmacy, National University of Singapore) for the assistance on the CDK2 assay.

REFERENCES

(1) Cohen, P. Protein kinases—The major drug targets of the twenty-first century? *Nat. Rev. Drug Discovery* **2002**, *1*, 309–315.

(2) Roberts, P. J.; Der, C. J. Targeting the Raf-MEK-ERK mitogen activated protein kinase cascade for the treatment of cancer. *Oncogene* **2007**, *26*, 3291–3310.

(3) Cuenda, A.; Rousseau, S. P38 MAP-Kinases pathway regulation, function and role in human diseases. *Biochim. Biophys. Acta Mol. Cell Res.* **2007**, *1773*, 1358–1375.

(4) Pandya, N.; Santani, D.; Jain, S. Role of mitogen-activated protein (MAP) kinases in cardiovascular diseases. *Cardiovasc. Drug Rev.* 2005, 23, 247–254.

(5) Zhang, J.; Yang, P. L.; Gray, N. S. Targeting cancer with small molecule kinase inhibitors. *Nat. Rev. Cancer* **2009**, *9*, 28–39.

(6) Azam, M.; Latek, R.; Daley, G. Mechanisms of autoinhibition and STI-571/Imatinib resistance revealed by mutagenesis of *BCR-ABL*. *Cell* **2003**, *112*, 831–843.

(7) Pao, W.; Miller, V.; Politi, K.; Riely, G.; Somwar, R.; Zakowski, M.; Kris, M.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or elotinib is associated with a second mutation in the EGFR kinase domain. *PLoS Med.* **2005**, *2*, 225–234.

(8) Daub, H.; Specht, S.; Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. *Nat. Rev. Drug Discovery* **2005**, *3*, 1001–1010.

(9) Winssinger, N.; Barbluenga, S. Chemistry and biology of resorcylic acid lactones. *Chem. Commun.* **2007**, *1*, 22–36.

(10) Barbluenga, S.; Dakas, P. Y.; Boulifa, M.; Moulin, E.; Winssinger, N. Resorcylic acid lactones: A pluripotent scaffold with therapeutic potential. *C. R. Chim.* **2008**, *11*, 1306–1317.

(11) Hofmann, T.; Altmann, K.-H. Resorcylic acid lactones as new lead structures of kinase inhibition. C. R. Chim. 2008, 11, 1318–1335.

(12) Dakas, P. Y.; Jogireddy, R.; Valot, G.; Barluenga, S.; Winssinger,
 N. Divergent synthesis of resorcylic acid lactones: L-783277, LL-Z1640-2, and hypothemycin. *Chem.—Eur. J.* 2009, *15* (43), 11490–11497.

(13) Rastelli, G.; Rosenfeld, R.; Reid, R.; Santi, D. V. Molecular modeling and crystal structure of ERK2-hypothemycin complexes. *J. Struct. Biol.* **2008**, *164*, 18–23.

(14) Hearn, B. R.; Sundermann, K.; Cannoy, J.; Santi, D. V. Semisynthesis and cytotoxicity of hypothemycin analogues. *ChemMedChem* **2007**, *2*, 1598–1600.

(15) Ellestad, G. A.; Lovell, F. M.; Perkinson, N. A.; Hargreaves, R. T.; McGahren, W. J. New zearalenone related macrolides and isocoumarins from an unidentified fungus. *J. Org. Chem.* **1978**, 43, 2339–2343.

(16) Ninomiya-Tsuji, J.; Kajino, T.; Ono, K.; Ohtomo, T.; Matsumoto, M.; Shiina, M.; Mihara, M.; Tsuchiya, M.; Matsumoto, K. A resorcyclic acid lactone, 5-Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activivity of TAK1MAPK kinase kinase. *J. Biol. Chem.* **2003**, 278, 18485–18490.

(17) Jogireddy, R.; Barluenga, S.; Winssinger, N. Molecular editing of kinase-targeting resorcylic acid lactones (RAL): Fluoroenone RAL. *ChemMedChem* **2010**, *5*, 670–673.

(18) Shen, Y.; Boivin, R.; Yoneda, N.; Du, H.; Schiller, S.; Matsushima, T.; Goto, M.; Shirota, H.; Gusovsky, F.; Lemelin, C.; Jiang, Y.; Zhang, Z.; Pelletier, R.; Ikemori-Kawada, M.; Kawakami, Y.; Inoue, A.; Schnaderbeck, M.; Wang, Y. Discovery of antiinflammatory clinical candidate E6201, inspired from resorcylic lactone LL-Z1640-2, III. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3155–3157.

(19) Ikemori-Kawada, M.; Kawai, T.; Goto, M.; Wang, Y. J.; Kawakami, Y. Conformational analyses and MO studies of f152A1 and its analogues as potent protein kinase inhibitors. *J. Chem. Inf. Model.* **2009**, *49*, 2650–2659.

(20) Zhao, A.; Lee, S. H.; Mojena, M.; Jenkins, R. G.; Patrick, D. R.; Huber, H. E.; Goetz, M. A.; Hensens, O. D.; Zink, D. L.; Vilella, D.; Dombrowski, A. W.; Lingham, R. B.; Huang, L. Resorcylic acid lactones: Naturally occurring potent and selective inhibitors of MEK. *J. Antibiot.* **1999**, *52*, 1086–1094.

(21) Liniger, M.; Neuhaus, C.; Hofmann, T.; Fransioli-Ignazio, L.; Jordi, M.; Drueckes, P.; Trappe, J.; Fabbro, D.; Atlmann, K.-H. Kinase inhibition by deoxy analogues of the resorcylic lactone L-783277. ACS Med. Chem. Lett. **2011**, 2, 22–27.

(22) Schirmer, A.; Kennedy, J.; Murli, S.; Reid, R.; Santi, D. V. Targeted covalent inactivation of protein kinases by resorcylic acid lactone polyketides. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 4234–4239.

(23) Ohori, M.; Kinoshita, T.; Yoshimura, S.; Warizaya, M.; NakajimaH.; Miyake, H. Role of a cysteine residue in the active site of ERK and the MAPKK family. *Biochem. Biophys. Res. Commun.* **2007**, 353, 633–637.

(24) Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. *J. Org. Chem.* **2002**, *67*, 1561–1566.

(25) Geng, X.; Danishefsky, S. J. Total synthesis of aigialomycin D. Org. Lett. 2004, 6, 413–416.

(26) Barluenga, S.; Dakas, P.-Y.; Ferandin, Y.; Meijer, L.; Winssinger, N. Modular asymmetric synthesis of aigialomycin D, a kinase-inhibitory scaffold. *Angew. Chem., Int. Ed.* **2006**, *45*, 3951–3954.

(27) Vu, N. Q.; Chai, C. L. L.; Lim, K. P.; Chia, S. C.; Chen, A. An efficient and practical total synthesis of aigialomycin D. *Tetrahedron* **2007**, *63*, 7053–7058.

(28) The preparation of Weinreb amides **9** and **10** was prepared according to procedures described in ref 27.

(29) Malumbres, M.; Pevarello, P.; Barbacid, M.; Bischoff, J. R. CDK inhibitors in cancer therapy: What is next? *Trends Pharmacol. Sci.* **200**7, 29, 16–21.

(30) McInnes, C. Progress in the evaluation of CDK inhibitors as anti-tumor agents. *Drug Discovery Today* **2008**, *13*, 875–811.

(31) Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. *Nat. Rev. Drug Discovery* **2009**, *8*, 309–315.

(32) Aoyama, T.; Terasawa, S.; Sudo, K.; Shioiri, T. New methods and reagents in organic synthesis, 46. Trimethylsilyldiazomethane: A convenient reagent for the O-methylation of phenols and enols. *Chem. Pharm. Bull.* **1984**, *32*, 3759–3760.

(33) Wee, X. K.; Yeo, W. K.; Zhang, B.; Tan, V. B. C.; Lim, K. M.; Tay, T. E.; Go, M.-L. Synthesis and evaluation of functionalized isoindigos as antiproliferative agents. *Biol. Med. Chem.* **2009**, *17*, 7562–7571.

(34) Gjerdrum, C.; Tiron, C.; Hoiby, T.; Stefansson, I.; Haugen, H.; Sandal, T.; Collett, K.; Li, S.; McCormack, E.; Gjertsen, B. T.; Micklem, D. R.; Akslen, L. A.; Glackin, C.; Lorens, J. B. AXL is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 1124–1129.

(35) Pratz, K. W.; Levis, M. J. Bench to bedside targeting of FLT3 in acute leukemia. *Curr. Drug Targets* **2010**, *11*, 781–789.

(36) Parcells, B. W.; Ikeda, A. K.; Simms-Waldrip, T.; Moore, T. B. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. *Stem Cells* **2006**, *24*, 1174–1184.

(37) Scheper, G. C.; Morrice, N. A.; Kleijn, M; Proud, C. G. The mitogen activated protein kinase signal-integrating kinase Mnk2 is an eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. *Mol. Cell. Biol.* **2001**, *21*, 743–754.

(38) Jauch, R.; Cho, M.-K.; Jakel, S.; Netter, C.; Schreiter, K.; Aicher, B.; Zweckstetter, M.; Jackle, H.; Wahl, M. C. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reproprammed activation segment. *EMBO J.* **2006**, *25*, 4020–4032.

(39) Parra, J. L.; Buxade, M.; Proud, C. G. Features of the catalytic domains and C termini of the MARK singal-intergrating kinases Mnk1 and Mnk2 determine their differing activites and regulatory properties. *J. Biol. Chem.* **2005**, *280*, 37623–37833.

(40) Rosario, C. O.; Ko, M. A.; Haffani, Y. Z.; Gladdy, R. A.; Paderova, J.; Pollett, A.; Squire, J. A.; Dennis, J. W.; Swallow, C. J. Plk4 is required for cytokinesis and maintenance of chromosomal stability. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 6888–6893.

(41) Holland, A. J.; Lan, W.; Niessen, S.; Hoover, H.; Cleveland, D. W. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. *J. Cell Biol.* **2010**, *188*, 191–198.

(42) Strebhardt, K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. *Nat. Rev. Drug Discovery* **2010**, *9*, 633–660.

(43) De Benedetti, A.; Graff, J. R. eIF-4E expression and its role in malignancies and metastases. *Oncogene* **2004**, *23*, 3189–3199.

(44) von der Haar, T.; Gross, J. D.; Wagner, G.; McCarthy, J. E. The m-RNA cap-binding protein eIF4E in post-transcriptional gene expression. *Nat. Struct. Mol. Biol.* **2004**, *11*, 503–511.